Wednesday, March 4, 2009

The method of solving least-squares problems

Linear least squares problems
  • Newton's Method
Non-Linear least squares problems
  • Gauss-Newton Method
  • Quasi-Newton Method
  • Gauss-Raphson Method
  • Levenberg-Marguardt Method
  • Powell's Dog Leg Method
  • Hybrid Method: L-M and Quasi-Newton
Good references:
  • 1999, Poul E. Frandsen, http://www2.imm.dtu.dk/documents/ftp/publlec/lec2_99.pdf
Descent method
Conjugate Gradient mehod
Newton-based method, included Quasi-Newton
  • 1999, Hans B. Nielsen: http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf
Descent method
Gauss-Newton method
Levenberg-Marquardt method
Powell's Dog Leg method
Hybrid: LMA+QN
Newton's Method, NM
Also called Newton-Raphson Method.  It uses the first few terms of the Taylor series (Taylor expansion) of a function  in the vicinity of a suspected root.  
  • http://mathworld.wolfram.com/NewtonsMethod.html
  • http://en.wikipedia.org/wiki/Newton's_method

Relationship between Newton's method, Halley method, and Householder's method.
  • Newton's method is 1st in the class of Householder's method.
  • Halley's method is 2nd in the class of Householder's method.
  • http://en.wikipedia.org/wiki/Householder's_method
  • http://en.wikipedia.org/wiki/Halley's_method

  • Levenberg-Marquardt Algorithm, LMA
  • http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
  • http://mathworld.wolfram.com/Levenberg-MarquardtMethod.html
  • http://homepages.inf.ed.ac.uk/cgi/rbf/CVONLINE/entries.pl?TAG49
  • Nov. 1996, Sam Roweis: http://www.cs.toronto.edu/~roweis/notes/lm.pdf
  • Good Introduction to talk about the LM from Newton's method, modefied by Levenberg, then modefied by Marquardt to become LM algorithm.
1999, Hans B. Nielsen: http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf
Apr. 2004, Hans B. Nielsen: http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
  • Above two articles are refered by LEVMAR.
June 2004, Ananth R.: http://www.cc.gatech.edu/~ananth/docs/lmtut.pdf
  • A good article also to talk about the LM from Newton's, Levenberg, and Marquardt to become LMA.
Feb. 2005, Manolis L.: http://www.ics.forth.gr/~lourakis/levmar/levmar.pdf
  • The article talking about source code LEVMAR. A pseudocode provided.
Nov. 2006, Pradit M.: http://cobweb.ecn.purdue.edu/~kak/courses-i-teach/ECE661.08/homework/HW5_LM_handout.pdf
  • Simple example and Matlab code provided.
http://www.cse.ucsd.edu/classes/fa04/cse252c/vrabaud1.pdf
  • Matlab code, thanks for Pradit Mittrapiyanuruk.

Gauss-Newton Method, GNM
  • http://en.wikipedia.org/wiki/Gauss-Newton_algorithm
  • http://reference.wolfram.com/mathematica/tutorial/UnconstrainedOptimizationGaussNewtonMethods.html
  • 1999, Hans B. Nielsen: http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf
Gauss-Raphson Method, GRM
Continue..
Quasi-Netwon Method, QNM
  • http://reference.wolfram.com/mathematica/tutorial/UnconstrainedOptimizationQuasiNewtonMethods.html
  • 1999, Poul E. Frandsen, http://www2.imm.dtu.dk/documents/ftp/publlec/lec2_99.pdf
Powell's Dog Leg Method, PDLM
  • 1999, Hans B. Nielsen: http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf
Hybrid Method: L-M and Quasi-Newton, H:LM+QN
  • 1999, Hans B. Nielsen: http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf
LMA for linear convergence
QN for superlinear convergence
Papers:
  • Yao Jianchao, Chia Tien Chern, COMPARISON OF NEWTON-GAUSS WITH LEVENBERG-MARQUARDT ALGORITHM FOR SPACE RESECTION, Proc. ACRS 2001 - 22nd Asian Conference on Remote Sensing, 5-9 November 2001, Singapore. Vol. 1, pp. 256-261.
  • C. Kanzow, N. Yamashita and M. Fukushima, Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, J. Comput. Appl. Math.172 (2004), pp. 375–397.
  • Kanzow, C., Yamashita, N., and Fukushima, M. 2004. Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math. 172, 2 (Dec. 2004), 375-397. DOI= http://dx.doi.org/10.1016/j.cam.2004.02.013
  • Lourakis, M. I. and Argyros, A. A. 2005. Is Levenberg-Marquardt the Most Efficient Optimization Algorithm for Implementing Bundle Adjustment?. In Proceedings of the Tenth IEEE international Conference on Computer Vision - Volume 2 (October 17 - 20, 2005). ICCV. IEEE Computer Society, Washington, DC, 1526-1531. DOI= http://dx.doi.org/10.1109/ICCV.2005.128

Source codes:
levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++
lmfit — a C/C++ routine for Levenberg-Marquardt minimization with wrapper for least-squares curve fitting
lmfit is easy to install it because it is without the dependency problem.
Levenberg-Marquardt for Visual C++ 2005
Levenberg-Marquardt algorithm for multivariate optimization in C#/C++/Delphi/VB6/Zonnon

Continue....

No comments:

Clicky

Clicky Web Analytics