Tuesday, March 3, 2009

Simple Matlab demo of LM algorithm

Special thanks to Pradit Mittrapiyanuruk.
His open article gives us a very good simple demo of Levenberg-Marquardt Algorithm.

The code is almost the same with code provided from http://www.cse.ucsd.edu/classes/fa04/cse252c/vrabaud1.pdf
The red statements are simple plotting graphic. The statements will show the result as iteration=1,2,3,5,10, and 100.
=================================================================
%definition, giving a function f and create jacobian function for function
%f
syms a b x y real;
f=( a * cos(b*x) + b * sin(a*x))
d=y-f;
Jsym=jacobian(d,[a b]);
%Generate the synthetic data from the curve function with some additional
%noise
a=100;
b=102;
x=[0:0.1:2*pi]';
y = a * cos(b*x) + b * sin(a*x);
% add random noise
y_input = y + 5*rand(length(x),1);

%start the LMA
% initial guess for the parameters
a0=100.5; b0=102.5;
y_init = a0 * cos(b0*x) + b0 * sin(a0*x);
Ndata=length(y_input);
Nparams=2; % a and b are the parameters to be estimated
n_iters=100; % set # of iterations for the LM
lamda=0.01; % set an initial value of the damping factor for the LM
updateJ=1;
a_est=a0;
b_est=b0;
for it=1:n_iters
if updateJ==1
% Evaluate the Jacobian matrix at the current parameters (a_est, b_est)
J=zeros(Ndata,Nparams);
for i=1:length(x)
J(i,:)=[-cos(b_est*x(i))-(b_est*cos(a_est*x(i))*x(i)) (a_est*sin(b_est*x(i))*x(i))-sin(a_est*x(i))];
end
% Evaluate the distance error at the current parameters
y_est = a_est * cos(b_est*x) + b_est * sin(a_est*x);
d=y_input-y_est;
% compute the approximated Hessian matrix, J’ is the transpose of J
H=J'*J;
if it==1 % the first iteration : compute the total error
e=dot(d,d);
end
end

% Apply the damping factor to the Hessian matrix
H_lm=H+(lamda*eye(Nparams,Nparams));
% Compute the updated parameters
dp=-inv(H_lm)*(J'*d(:));
a_lm=a_est+dp(1);
b_lm=b_est+dp(2);
% Evaluate the total distance error at the updated parameters
y_est_lm = a_lm * cos(b_lm*x) + b_lm * sin(a_lm*x);
% plot
if it == 1
h1=plot(y_input, 'b');
hold on
h1=plot(y_est_lm, 'r');
legend(h1,'iteration=1');
hold off
pause
end
if it == 2
h1=plot(y_input, 'b');
hold on
h1=plot(y_est_lm, 'r');
legend(h1,'iteration=2');
hold off
pause
end
if it == 3
h1=plot(y_input, 'b');
hold on
h1=plot(y_est_lm, 'r');
legend(h1,'iteration=3');
hold off
pause
end
if it == 5
h1=plot(y_input, 'b');
hold on
h1=plot(y_est_lm, 'r');
legend(h1,'iteration=5');
hold off
pause
end
if it == 10
h2=plot(y_input, 'b');
hold on
h2=plot(y_est_lm, 'r');
legend(h2,'iteration=10');
hold off
pause
end
if it == 100
h3=plot(y_input, 'b');
hold on
h3=plot(y_est_lm, 'r');
legend(h3,'iteration=100');
hold off
pause
end
d_lm=y_input-y_est_lm;
e_lm=dot(d_lm,d_lm);
% If the total distance error of the updated parameters is less than the previous one
% then makes the updated parameters to be the current parameters
% and decreases the value of the damping factor
if e_lm
lamda=lamda/10;
a_est=a_lm;
b_est=b_lm;
e=e_lm;
disp(e);
updateJ=1;
else % otherwise increases the value of the damping factor
updateJ=0;
lamda=lamda*10;
end
end
=================================================================
Code download, lmademo.m
You will the blue line is fitting close to red line after few iterations.





7 comments:

  1. you have a nice site. thanks for sharing this site. you can download lots of ebook from here

    http://feboook.blogspot.com

    ReplyDelete
  2. Finding the time and actual effort to create a superb article like this is great thing. I’ll learn many new stuff right here! Good luck for the next post buddy..
    Matlab Training in Chennai

    ReplyDelete